Robust min}max portfolio strategies for rival forecast and risk scenarios

نویسندگان

  • Robin G. Becker
  • Wolfgang Marty
چکیده

We consider an extension of the Markowitz mean}variance optimization framework to multiple return and risk scenarios. It is well known that asset return forecasts and risk estimates are inherently inaccurate. The method proposed provides a means for considering rival representations of the future. The optimal portfolio is computed, simultaneously with the worst case, to take account of all rival scenarios. This is a min-max strategy which is essentially equivalent to a robust pooling of the scenarios. Robustness is ensured by the noninferiority of min}max. For example, a basic worst-case optimal return is guaranteed in view of multiple return scenarios. If robustness happens to have too high a cost, guided by the min}max pooling, it is also possible to explore other pooling alternatives. A min}max algorithm is used to solve the problem and illustrate the robust character of min}max with return and risk scenarios. We study the properties of the min}max risk}return frontier and compare with the potentially suboptimal worst-case where the investment strategy and the worst case are computed separately. ( 2000 Elsevier Science B.V. All rights reserved. JEL classixcation: C44; C61; C63; G11

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Worst-case Optimal Robust Decisions for Multi-period Mean-Variance Portfolio Optimization

Financial decision making involves uncertainty and consequently risk. It is well known that asset return forecasts and risk estimates are inherently inaccurate. The inaccuracy in forecasting and estimation can be addressed through the specification of rival scenarios. In this paper, we extend the multi-period mean-variance portfolio optimization and asset liability management problems to the ro...

متن کامل

Robust portfolio selection with polyhedral ambiguous inputs

 Ambiguity in the inputs of the models is typical especially in portfolio selection problem where the true distribution of random variables is usually unknown. Here we use robust optimization approach to address the ambiguity in conditional-value-at-risk minimization model. We obtain explicit models of the robust conditional-value-at-risk minimization for polyhedral and correlated polyhedral am...

متن کامل

Robustness in portfolio optimization based on minimax regret approach

Portfolio optimization is one of the most important issues for effective and economic investment. There is plenty of research in the literature addressing this issue. Most of these pieces of research attempt to make the Markowitz’s primary portfolio selection model more realistic or seek to solve the model for obtaining fairly optimum portfolios. An efficient frontier in the ...

متن کامل

Robust Portfolio Optimization with risk measure CVAR under MGH distribution in DEA models

Financial returns exhibit stylized facts such as leptokurtosis, skewness and heavy-tailness. Regarding this behavior, in this paper, we apply multivariate generalized hyperbolic (mGH) distribution for portfolio modeling and performance evaluation, using conditional value at risk (CVaR) as a risk measure and allocating best weights for portfolio selection. Moreover, a robust portfolio optimizati...

متن کامل

A two-stage robust model for portfolio selection by using goal programming

In portfolio selection models, uncertainty plays an important role. The parameter’s uncertainty leads to getting away from optimal solution so it is needed to consider that in models. In this paper we presented a two-stage robust model that in first stage determines the desired percentage of investment in each industrial group by using return and risk measures from different industries. One rea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000